546. The Synthesis of Alkoxy-1,2,3,4-tetrahydronaphthalene Derivatives. Part II. ${ }^{1}$ 2-Carboxy Hydrazides

By D. Evans and T. F. Grey

Condensation of the previously-reported ${ }^{\mathbf{1}} 5$-, 7 -, and 8 -alkoxy-2-tetralones ($\mathrm{I} ; \mathrm{R}=$ Me or Et) with known carboxyhydrazides (II) gave 2-naphthylidene hydrazides (III) which were then reduced with sodium borohydride to the saturated naphthyl hydrazides (IV).

The hydrolysis of 2-(1,2,3,4-tetrahydro-7-methoxy-2-naphthyl)benzohydrazide (IV; $\mathrm{R}=7-\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}$) with 6 N -hydrochloric acid gave 1,2,3,4-tetrahydro-7-hydroxy-2-naphthylhydrazine hydrochloride.

Experimental.-Carboxyhydrazides (II). Commercial benzohydrazide was used. Anthranilichydrazide, ${ }^{2}$ isonicotinichydrazide, ${ }^{3}$ and 2 -thiophenecarboxyhydrazide ${ }^{4}$ were prepared by refluxing ethanolic solutions of the corresponding esters with hydrazine hydrate.

2-(Alkoxy-1,2,3,4-tetrahydro-2-naphthylidene) carboxyhydrazides (III). A mixture of the alkoxy-2-tetralone ($0 \cdot 1 \mathrm{~mol}$.), carboxyhydrazide ($0 \cdot 1 \mathrm{~mol}$.), and ethanol (250 ml .) was refluxed for 5 hr .; the solution was concentrated to half its volume and cooled. The solid that separated was recrystallised from ethanol. Details of the crystalline hydrazides thus obtained are given in Table 1.

Table 1
2-(Alkoxy-1,2,3,4-tetrahydro-2-naphthylidene)carboxyhydrazides (III)

R	R^{\prime}	M. p.	Yield	Found (\%)				Required (\%)		
			(\%)	C	H	N	Formula	C	H	N
5-Me	4-Pyridyl	173-175 ${ }^{\circ}$	48	$69 \cdot 4$	$5 \cdot 8$	14.6	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$	$69 \cdot 1$	$5 \cdot 8$	$14 \cdot 2$
$5-\mathrm{Me}$	2-Thienyl	159-161	53	$64 \cdot 2$	$5 \cdot 4$	$9 \cdot 4$	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	$64 \cdot 0$	$5 \cdot 4$	$9 \cdot 3$
${ }^{7} \mathrm{M}-\mathrm{Me}$	${ }^{\mathrm{O}} \mathrm{Ch}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	143-145	57	$70 \cdot 1$	$6 \cdot 1$	$13 \cdot 6$	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$	69.9	$6 \cdot 2$	$13 \cdot 6$
$7-\mathrm{Me}$	Ph	Not purified								
$7-\mathrm{Me}$	4-Pyridyl	127-130	65	$69 \cdot 3$	6.3	$13 \cdot 8$	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$	$69 \cdot 1$	$5 \cdot 8$	$14 \cdot 2$
$7-\mathrm{Me}$	2-Thienyl	148-150	90	$64 \cdot 5$	$5 \cdot 4$	$9 \cdot 1$	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	$64 \cdot 0$	$5 \cdot 4$	$9 \cdot 3$
$8-\mathrm{Me}$	$0-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	170-173	75	$70 \cdot 4$	6.3	$13 \cdot 2$	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$	$69 \cdot 9$	6.2	$13 \cdot 6$
$8-\mathrm{Me}$	4-Pyridyl	176-177	89	69.5	$5 \cdot 5$	$14 \cdot 1$	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$	$69 \cdot 1$	$5 \cdot 8$	$14 \cdot 2$
$8-\mathrm{Me}$	2-Thienyl	162-165	82	$63 \cdot 8$	$5 \cdot 6$	$9 \cdot 2$	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	$64 \cdot 0$	$5 \cdot 4$	$9 \cdot 3$
8 -Et	4-Pyridyl	164-166	52	$70 \cdot 3$	$6 \cdot 1$	$13 \cdot 2$	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$	$69 \cdot 9$	6.2	$13 \cdot 6$

2-(Alkoxy-1,2,3,4-tetrahydro-2-naphthyl)carboxyhydrazides (IV). The unsaturated hydrazide (0.033 mol .), in absolute ethanol (600 ml .), was added dropwise to a stirred suspension of sodium borohydride (0.045 mol .) in ethanol (150 ml .) at 0°. The mixture was kept at 0° for 2 hr ., and then allowed to reach room temperature overnight. A solution of acetic acid (14 ml .) in water (50 ml .) was added and the whole poured into cold water (ll.). The reduced hydrazide that separated was either purified by recrystallisation from aqueous ethanol or converted into its hydrochloride. Detazils of these products are given in Table 2.

1,2,3,4-Tetrahydro-7-hydroxy-2-naphthylhydrazine hydrochloride. 2-(1,2,3,4-Tetrahydro7 -methoxy-2-naphthyl)benzohydrazide (13.0 g .) and 6 N -hydrochloric acid (100 ml .) were refluxed for 10 hr ., cooled, and filtered. The filtrate was concentrated to 10 ml ., and the solid that separated was recrystallised twice from 8 N -hydrochloric acid (charcoal). This hydrochloride

[^0](2.8 g.) had m. p. 201-203 ${ }^{\circ}$ (Found: C, 55.7 ; H, 7.2 ; Cl, 16.9; N, 12.9. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}, \mathrm{HCl}$ requires $\mathrm{C}, 55.9 ; \mathrm{H}, 7 \cdot 0 ; \mathrm{Cl}, 16.5 ; \mathrm{N}, 13 \cdot 0 \%$).

Table 2
2-(Alkoxy-1,2,3,4-tetrahydro-2-naphthyl)carboxyhydrazides (IV) and hydrochlorides

R	R'	M. p.	Yield (\%)	Found (\%)			Formula	Required (\%)		
				C	H	N		C	H	N
$5-\mathrm{Me}$	4-Pyridyl	$227-229^{\circ}$	59	53.9	$6 \cdot 0$	$10 \cdot 9$	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	53.8	$5 \cdot 8$	$11 \cdot 1$
$7-\mathrm{Me}$	$0-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	219-220	66	56.6	6.5	$10 \cdot 9$	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	56.2	6.0	$10 \cdot 9$
$7-\mathrm{Me}$	$\mathrm{Ph}{ }^{\text {a }}$	138-139	52	73.0	$7 \cdot 2$	$9 \cdot 2$	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$	73.0	6.8	9.5
$7-\mathrm{Me}$	4-Pyridyl	224-225	57	$54 \cdot 8$	$5 \cdot 8$	11.2	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	$55 \cdot 1$	5.7	11.4
$7-\mathrm{Me}$	2-Thienyl	127-129	72	63.6	$5 \cdot 9$	$9 \cdot 3$	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	$63 \cdot 6$	$6 \cdot 0$	$9 \cdot 3$
$8-\mathrm{Me}$	$0-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	184-185	90	69.3	6.7	13.7	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$	$69 \cdot 4$	6.8	$13 \cdot 5$
$8-\mathrm{Me}$	4-Pyridyl	160-161	91	68.6	6.0	$14 \cdot 0$	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$	68.7	$6 \cdot 4$	14•1
8 -Me	2-Thienyl	142-144	87	$63 \cdot 6$	$5 \cdot 9$	8.9	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	$63 \cdot 6$	6.0	$9 \cdot 3$
$8-\mathrm{Et}$	4-Pyridyl	223-224	60	55.9	6.0	$10 \cdot 8$	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	56.3	6.0	$10 \cdot 9$

The authors thank Mr. F. H. Oliver for the microanalyses, and Messrs. D. Huckle and M. Wright for some technical assistance.

Parke, Davis \& Company,
Staines Road, Hounslow, Middlesex.
[Received, October 22nd, 1964.]

[^0]: ${ }^{1}$ Part I, J., 1965, 2636.
 ${ }^{2}$ H. H. Fox and J. T. Gibas, J. Org. Chem., 1952, 17, 1653.
 ${ }^{3}$ S. Takizawa, Japanese Patent 7,472/1954.
 ${ }^{4}$ T. Curtius and H. Thyssen, J. prakt. Chem., 1902, 65, [2], 1.

